Synthesis and structure of bis(triphenylgermane)tetrakis(tetrahydrofuran) ytterbium

M.N. Bochkarev *, I.M. Penyagina, L.N. Zakharov, Yu.F. Rad'kov, E.A. Fedorova, S.Ya. Khorshev
Institute of Organometallic Chemistry, U.S.S.R. Academy of Sciences, Gorky (U.S.S.R.)

Yu.T. Struchkov

Institute of Organoelement Compounds, U.S.S.R. Academy of Sciences, Moscow (U.S.S.R.)
(Received May 17th, 1989)

Abstract

The reaction of the naphthalene complex of ytterbium $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Yb}(\mathrm{THF})_{3}$ with dihydrogen under ambient conditions gives the ytterbium dihydride $\left[\mathrm{H}_{2} \mathrm{Yb}(\mathrm{THF})\right]_{n}$. The reaction of the naphthaleneytterbium with $\mathrm{Ph}_{3} \mathrm{GeH}$ in THF at room temperature gives the unusual germaneytterbium complex $\left(\mathrm{Ph}_{3} \mathrm{GeH}\right)_{2} \mathrm{Yb}(\mathrm{THF})_{4}$. An X-ray diffraction study $\left(a=9.980(2), b=17.305(4), c=13.883(3) \AA, \beta=96.37(2)^{\circ}, Z=2\right.$, space group $P 2_{1}, 4552$ reflections, $R-0.036, R_{w}=0.031$) has shown that the Yb atom in the molecule of this complex has octahedral coordination; the four THF molecules are in the equatorial plane and the $\mathrm{Ph}_{3} \mathrm{GeH}$ ligands are in the axial positions. The hydride H atoms of the $\mathrm{Ph}_{3} \mathrm{GeH}$ groups form μ_{2}-bridges between Yb and Ge atoms.

Introduction

Organometallic hydrides are known for most of the rare earth elements. All of the hydrides, characterised by X-ray diffraction, have $\mathrm{Ln}^{\mathrm{III}}$ and one of the following structures [1]:

The general routes to these compounds are: (i) the hydrogenolysis or the thermolysis of $\mathrm{Cp}_{2} \mathrm{LnR}$ or similar complexes, (ii) the reduction of $\mathrm{Cp}_{2} \mathrm{LnHal}$ by sodium hydride,
LiAlH_{4} or similar hydrides, and (iii) the cocondensation of I.n vapors with unsaturated hydrocarbons.

Here we report on the synthesis of two novel hydride complexes of ytterbium and an X-ray diffraction study of one of them. For preparation of these compounds naphthaleneytterbium complex $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Yb}(\mathrm{THF})_{3}$ (I) obtained recently [2] was used. Precise structure of the very reactive I has not been established as yet but it does not prevent its use in the synthesis of new organolanthanoids.

Results and discussion

We have found that when a suspension of I in THF is shaken under dihydrogen at room temperature and atmospheric pressure, I gradually dissolves and hydride II * forms. Under the same conditions, but in the absence of solvent, the dry powder of I gradually becomes a waxy dark-brown suspension. The yield of II is almost the same ($70-80 \%$) in both cases.
$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Yb}(\mathrm{THF})_{3}+\mathrm{H}_{2} \longrightarrow\left[\mathrm{H}_{2} \mathrm{Yb}(\mathrm{THF})\right]_{n}+\mathrm{C}_{10} \mathrm{H}_{8}$

The deuterium analogue of $I I$ is prepared when D_{2} is used in place of H_{2}.
Freshly prepared II is an air-sensitive, dark-brown solid, that is soluble in THF and DME, sparingly soluble in toluene, and insoluble in hexane. Storage of II at room temperature in vacuo slowly releases H_{2} and the solubility of II decreases. The structure of II is confirmed by elemental analysis, and by its reaction with diluted HCl which gives $\mathrm{H}_{2}(93 \%), \mathrm{YbCl}_{3}(91 \%)$ and THF (90%). The IR spectrum of II is very poor. A few broad bands are present, one of which ($1250 \mathrm{~cm}^{-1}$) is attributable to stretching of the $\mathrm{Yb}-\mathrm{H}-\mathrm{Yb}$ bridges. This band is absent in the spectrum of the deuterium derivative which shows instead a weak absorption at $890 \mathrm{~cm}^{-1}$. These frequencies are in the region which is characteristic for $\boldsymbol{v}(\mathrm{Ln}-\mathrm{H}(\mathrm{D}))$ in the spectra of the hydrides $\left[\mathrm{Cp}_{2} \operatorname{LnH}(\mathrm{D})\right]_{2}[1]$.

The related ytterbium hydride is formed when I is heated with $\mathrm{Ph}_{3} \mathrm{GeH}$ in THF at $80^{\circ} \mathrm{C}$, but in this case it is impossible to separate properly the ytterbium hydride formed from $\mathrm{Ph}_{6} \mathrm{Ge}_{2}$ what is the second product of the reaction. The formation of $\mathrm{Yb}-\mathrm{H}$ groups is confirmed by HD evolution upon deuterolysis of the darkbrown solid isolated in this reaction.

An unusual and novel complex has been obtained by reaction of I with $\mathrm{Ph}_{3} \mathrm{GeH}$ at room temperature **. Under these conditions the brownish-yellow diamagnetic crystals of bis(triphenylgermane)tetrakis(tetrahydrofuran)ytterbium (III) are isolated from the reaction mixture.
$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{Yb}(\mathrm{THF})_{3}+2 \mathrm{Ph}_{3} \mathrm{GeH} \xrightarrow[20^{\circ} \mathrm{C}]{\mathrm{THF}}\left(\mathrm{Ph}_{3} \mathrm{GeH}\right)_{2} \mathrm{Yb}(\mathrm{THF})_{4}+\mathrm{C}_{10} \mathrm{H}_{8}$
(I)

Complex III decomposes slowly in air ($5-10 \mathrm{~min}$), melts at $129-133^{\circ} \mathrm{C}$ (dec.) in vacuo, and is soluble in THF, DME, and aromatic solvents. Oxidation of III with

* Preliminary communication [3].
** Preliminary communication [4].
dry oxygen gives triphenylgermane, triphenylgermanol and $\mathrm{Yb}_{2} \mathrm{O}_{3}$. The exothermic reaction with carbon dioxide in THF gives the tetramer of ytterbium triphenylgermylformiate $\left[\left(\mathrm{Ph}_{3} \mathrm{GeCO}_{2}\right)_{2} \mathrm{Yb} \cdot \mathrm{THF}\right]_{4}$. Its detailed synthesis and X-ray diffraction study will be published elsewhere.

The IR spectrum of III shows absorptions assignable to $\mathrm{Ph}_{3} \mathrm{Ge}$ groups and THF molecules. Also present in the spectrum are a small band at $2030 \mathrm{~cm}^{-1}$ characteristic of $\mathrm{Ge}-\mathrm{H}$ stretches in $\mathrm{Ph}_{3} \mathrm{GeH}$ [5] and one at $1300 \mathrm{~cm}^{-1}$ which can be attributed to the $\mathrm{Yb}-\mathrm{H}$ groups. It should be noted that the intensity of the band at $2030 \mathrm{~cm}^{-1}$ remains constant after multiple recrystallisations of III. Unfortunately our attempts to use ${ }^{1} \mathrm{H}$ NMR spectroscopy to identify the hydride protons in III failed.

The structure of complex III was established by X-ray diffraction. Unit cell parameters and intensities of 5408 reflections were measured with a Synthex $P 2_{1}$ diffractometer at $-120^{\circ} \mathrm{C}\left(\lambda \mathrm{Mo}-K_{\alpha}, \theta / 2 \theta\right.$-scan in the range $2 \leqslant 2 \theta \leqslant 55^{\circ}$). 4552 reflections with $F>4 \sigma(F)$ were used in the structure determination and refinement. The crystals of II are monoclinic, $a=9.980(2), b=17.305(4), c=13.883$ (3) $\AA, \beta=96.37(3)^{\circ}, Z=2, d_{\text {calc. }}=1.49 \mathrm{~g} \mathrm{~cm}^{-3}$, space group $P 2_{1}$. Positions of $Y \mathrm{Y}$ and Ge atoms were found by a direct method using the MULTAN program. The positions of the other nonhydrogen atoms were revealed by subsequent electrondensity syntheses. The structure was refined by a block-diagonal least squares methods with anisotropic thermal parameters for non-hydrogen atoms. Positions of H atoms of Ph rings were calculated by geometrical conditions. These were not refined but were recalculated after each cycle of the refinement.

The refinement was performed without restriction on $\sin \theta / \lambda$ in two variants: (a) with absorption corrections ($\mu\left(\mathrm{Mo}-K_{\alpha}\right)=34.2 \mathrm{~cm}^{-1}$) by DIFABS program [6] (final discrepancy factors: $R=0.036, R_{\mathrm{G}}=0.031$) and (b) without absorption coorections ($R=0.043, R_{\mathrm{G}}=0.041$). In order to locate the hydride H atoms the difference (zero) electron density syntheses were calculated subtracting all the non-hydrogen atoms and the Ph -ring H atoms. Calculation difference syntheses was performed in four variants: (i) with absorption correction and using reflections with $\sin \theta / \lambda \leqslant 0.4$ \AA^{-1} (the base variant); (ii) without absorption corrections using reflections with $\sin \theta / \lambda \leqslant 0.4 \AA^{-1}$; (iii) with absorption corrections using all reflections and (iv) without absorption corrections using all reflections. Both hydride H atoms were revealed in all four variants but variant (iv) gave illogical geometrical parameters. Therefore only the variants (i), (ii) and (iii) will be discussed further. It should be noted that in variants (i) and (ii) having a restriction in $\sin \theta / \lambda$ (i.e. taking into account reflections which have maximum contribution from H atoms), the relative weights of maximums of electron density syntheses corresponding to hydride H atoms are significantly larger than in variant (iii). We believe that variant (i) is the best to use in the discussion of the structure (vide infra).

The positions of the hydride H atoms as determined by each of the variants differ slightly. To examine the structure the difference synthesis was calculated for a model of the structure from which one of H atoms of the Ph rings and the hydride H atoms had been omitted. In this synthesis the electron density maxima corresponding to the hydride H atoms were about ~ 1.5 higher than the maximum corresponding to the omitted H atom of Ph ring.

All calculations were performed using INEXTL programs [7]. Atomic coordinates obtained in refinement of structure with absorption corrections are given in Table 1, H atom coordinates for all variants are given in Table 2, bond lengths and
Table 1
Atomic coordinates of $\mathrm{Yb}, \mathrm{Ge}\left(\times 10^{5}\right), \mathrm{O}$ and $\mathrm{C}\left(\times 10^{4}\right)$, and their anisotropic thermal factus ($\times 10^{2}$ for Yb , Ge atoms and $\times 10$ for O and C atoms) $T=\exp -1 / 4\left(B_{11} h^{2} a^{\star 2}+B_{22} k^{2} b^{\star 2}+\ldots+2 B_{23} k I b^{\star} c^{\star}\right)$ in the structure of II.

Atom	x	y	z	B_{11}	B_{22}	B_{33}	B_{12}	B_{13}	B_{23}
Yb	25146(2)	58681(12)	24950(10)	274(1)	177(1)	285(1)	24(1)	-50(1)	-2(1)
Gel	13778(10)	72780(6)	12220(8)	294(4)	202(4)	326(5)	92(4)	-16(4)	74(4)
Ge 2	36413(9)	44623(5)	37699(7)	197(3)	203(4)	197(4)	-2(3)	20(3)	--2(3)
01	569(6)	5120(3)	1803(5)	34(3)	21(3)	57(4)	4(2)	-27(3)	$-17(3)$
O2	4062(8)	5585(4)	1338(5)	$62(5)$	22(3)	49(4)	$-1(3)$	21(4)	5(3)
O3	4232(7)	6600(4)	3460(6)	54(4)	33(4)	53(4)	-4(3)	-18(3)	-7(3)
O4	1006(7)	6222(4)	3725(5)	50(4)	34(3)	39(4)	9(3)	14(3)	$\mathrm{O}(3)$
C1	2000(7)	7264(4)	$-120(6)$	16(3)	$9(3)$	30(4)	2(3)	-3(3)	4(3)
C2	2744(9)	7696(6)	-465(8)	33(4)	36(5)	38(6)	9(4)	-14(4)	-8(4)
C3	3282(11)	7652(7)	-1360(8)	$58(6)$	46(6)	30(5)	5(5)	10(5)	13(5)
C4	2839(9)	$7172(6)$	- 1964(7)	34(5)	48(6)	27(4)	2(4)	4(4)	2(4)
C5	1928(11)	6630(6)	-1691(9)	43(5)	41(6)	45(6)	16́(5)	3(5)	-8(5)
C6	1492(11)	6633(6)	-711(9)	43(6)	36(6)	56(8)	15(5)	8(5)	$-10(5)$
C7	-635(10)	7525(6)	875(8)	$35(5)$	17(4)	40(6)	$-1(4)$	1(5)	7(4)
C8	- 1283(10)	7518(7)	-98(9)	$33(5)$	43(6)	46(7)	$-7(5)$	$-12(5)$	8(5)
C9	-2653(9)	7722(8)	- 174(9)	24(4)	68(8)	$64(7)$	19(5)	-32(5)	2(6)
C10	- 3372(9)	7872(7)	489(9)	16(4)	54(6)	61(8)	4(4)	-0(4)	1(6)
C 11	-2669(9)	7797(7)	1501(8)	22(4)	$70(7)$	35(5)	8(4)	10(4)	$-7(5)$
C 12	-1393(11)	7578(7)	1696(9)	33(5)	51(7)	46(6)	$8(5)$	$9(5)$	6 (5)
C13	1995(9)	8342(5)	1648(6)	31(4)	27(4)	18(4)	6(3)	3(3)	3(3)
C14	3381(11)	8491(7)	1861(8)	47(5)	47(6)	29(5)	-6(5)	-6(4)	$-7(4)$
C 15	3837(11)	9225(7)	$2163(8)$	44(5)	$72(7)$	38(6)	$-33(5)$	$-7(5)$	-6(5)
Cl 6	2879(10)	9801(4)	2291(9)	60(6)	7(3)	69(8)	-10(3)	-2(6)	$-18(4)$
C17	1691(15)	9680(7)	$2132(14)$	88(10)	$23(6)$	140(15)	-8(6)	$7(10)$	-20(8)
C18	1245(10)	8998(6)	1782(9)	$41(5)$	33(5)	60(8)	$-3(4)$	$-9(51)$	-6(5)
C19	3019(9)	3421(5)	3327(7)	$33(4)$	27(4)	27(4)	$-2(3)$	2(3)	-2(3)
C20	1631(9)	3306(5)	$3130(7)$	$28(4)$	30(4)	31(5)	1(3)	4(3)	- $2(4)$

$1054(10)$
$1843(11)$
$3352(10)$
$3917(9)$
$3105(8)$
$2077(8)$
$1742(9)$
$2303(11)$
$3120(10)$
$3472(8)$
$5589(7)$
$6430(9)$
$7863(9)$
$8373(10)$
$7594(10)$
$6194(8)$
$874(12)$
$-483(16)$
$-1266(12)$
$-646(11)$
$4853(13)$
$4909(10)$
$4742(13)$
$4328(15)$
$4217(10)$
$5410(11)$
$6441(11)$
$5761(10)$
$118(10)$
$-199(12)$
$624(15)$
$678(10)$

$$
\begin{gathered}
2793(8) \\
2676(9) \\
2797(8) \\
3218(7) \\
5082(7) \\
5452(6) \\
6416(8) \\
6992(8) \\
6622(8) \\
5731(6) \\
4113(6) \\
3398(6) \\
3580(8) \\
4447(8) \\
5266(7) \\
5029(63) \\
1065(10) \\
711(13) \\
605(9) \\
1266(9) \\
891(10) \\
-164(8) \\
-66(9) \\
815(10) \\
3935(8) \\
4101(9) \\
4018(10) \\
3349(9) \\
4118(8) \\
5010(10) \\
5121(11) \\
4053(8)
\end{gathered}
$$

Fig. 1. The structure of III.
angles are listed in Table 3 and 4, respectively.
Complex III is an octahedral complex of Yb ; the four THF occupy equatorial, and two $\mathrm{Ph}_{3} \mathrm{GeH}$ ligands occupy axial positions (Fig. 1). The hydride atoms (H1 and H 2) of the $\mathrm{Ph}_{3} \mathrm{GeH}$ groups are μ_{2}-bridges connecting the Yb atom with the Ge 1 and Ge 2 atoms. The $\mathrm{H} 1 \mathrm{YbO}(1,2)$ and $\mathrm{H} 2 \mathrm{YbO}(3,4)$ angles $\left(88,89\right.$ and $78,83^{\circ}$ respectively) are less than, but the $\mathrm{H} 1 \mathrm{YbO}(3,4)$ and $\mathrm{H} 2 \mathrm{YbO}(1,2)$ angles $(96,91$ and $97,30^{\circ}$) are greater than, the ideal value of 90°; the OYbO angles in the equatorial plane are $83.4(2)-99.9(2)^{\circ}$.

The $\mathrm{Yb}-\mathrm{O}$ distances in II (2.399(8)-2.479(7) \AA) are slightly longer than in $\mathrm{Cp}_{2} \mathrm{YbMe}(\mathrm{THF})(2.311 \AA$ [8]) and are almost as long as similar bonds in $\left(\mathrm{Me}_{5} \mathrm{C}_{5}\right)_{2} \mathrm{Yb}(\mathrm{THF})(2.412 \AA[9]),\left(\mathrm{Me}_{3} \mathrm{SiC}_{5} \mathrm{H}_{4}\right)_{2} \mathrm{Yb}(\mathrm{THF})_{2}(2.42$ and $2.39 \AA[10])$ and in octahedral complexes of $\mathrm{CpYbX}(\mathrm{THF})_{3}$. In the latter the lengths of the equatorial and axial $\mathrm{Yb}-\mathrm{O}(\mathrm{THF})$ bonds are $2.336,2.365$ and $2.417 \AA$ for $\mathrm{X}=\mathrm{Cl}$ [11], and, $2.335,2.348$ and $2.428 \AA$ for $\mathrm{X}=\mathrm{Br}$ [12].

Table 2
Coordinates of H atoms (derived by the different variants of refinement)

Atom	x	y	z	Variant
H2	0.309	0.524	0.332	
H1	0.193	0.661	0.180	
H2	0.293	0.521	0.317	
H1	0.207	0.656	0.182	
H2	0.321	0.505	0.326	
H1	0.168	0.690	0.168	
H2	0.300	0.540	0.349	
H1	0.200	0.633	0.150	
0			(ii)	

The coordination of Ge atoms in both $\mathrm{Ph}_{3} \mathrm{GeH}$ groups is noticeably distorted from the ideal tetrahedral coordination. The CGeC angles at Ge 1 (97.9(4)-100.2(4) ${ }^{\circ}$) and $\mathrm{Ge} 2\left(98.8(4)-104.8(4)^{\circ}\right)$ atoms are smaller than the ideal tetrahedral angle, i.e. Ph groups appear to be bent away from the equatorial plane of the complex.

Table 3
The bond lengths $d(\AA)$ in the structure of Il (the distances with H atoms calculated on their "base" coordinates, i.e. with absorption corrections and using reflections with $\sin \theta / \lambda 0.4 \AA^{-1}$)

Bond	d	Bond	d
Yb-O1	2.440(6)	C6-C1	1.43(2)
$\mathrm{Yb}-\mathrm{O} 2$	2.399(8)	C7-C8	1.43(2)
Yb-O3	2.413(8)	C8-C9	1.40(2)
Yb-O4	$2.475(7)$	C9-C10	1.26(2)
Yb-H1	1.67	C10-C11	1.51(2)
$\mathrm{Yb}-\mathrm{H} 2$	1.64	C11-C12	1.33(2)
Ge1-H1	1.48	C12-C7	1.44(2)
Ge2-H2	1.56	C13-C14	1.41(2)
Gel-C1	2.028(9)	C14-C15	1.40(2)
Gel-C7	2.06(1)	C15-C16	1.41(2)
Gel-Cl3	$2.010(9)$	C16-C17	1.20(2)
Ge2-C19	$1.982(9)$	C17-C18	1.33(2)
Ge2-C25	1.961(9)	C18-C13	1.38(2)
Ge2-C31	$1.975(7)$	C19-C20	1.40(2)
C1-C2	1.19(2)	C20-C21	1.42(2)
C2-C3	1.41(2)	C21-C22	1.34(2)
C3-C4	1.23(2)	C22-C23	1.51(2)
C4-C5	$1.39(2)$	C23-C24	1.45(2)
C5-C6	1.47(2)	C24-C19	1.39(2)
C25-C26	1.59(2)	C47-C48	1.51(2)
C26-C27	1.42(2)	C48-O3	1.62(1)
C27-C28	1.53(2)	O4-C49	1.55(1)
C28-C29	1.33(2)	C49-C50	1.38(2)
C29-C30	1.34(2)	C50-C51	1.76 (20)
C30-C25	1.35 (2)	C51-C52	1.56(20)
C31-C32	1.40(2)	C52-O4	1.47(1)
C32-C33	1.46(2)		
C33-C34	1.25(2)		
C34-C35	1.46(2)		
C35-C36	1.42(2)		
C36-C31	1.36(2)		
O1-C37	1.57(1)		
C37-C38	1.43(2)		
C38-C39	1.51(2)		
C39-C40	1.23(2)		
C40-O1	1.43(1)		
O2-C41	1.33(1)		
C41-C42	1.59(2)		
C42-C43	1,27(2)		
C43-C44	1.34(2)		
C44-02	1.37(1)		
O3-C45	1.37(1)		
C45-C46	1.34(2)		
C46-C47	1.60(2)		

Table 4
The bond angles at $\mathrm{CO}\left({ }^{\circ}\right)$ in the structure of II (the angles with H atoms calculated on their "base" coordinates)

Angles		Angles	
01 YbO 2	99.9(2)	Ge 2 C 19 C 20	117.4(6)
01 YbO 3	169.1(2)	$\mathrm{Ge} 2 \mathrm{Cl9C24}$	122.0(7)
01 YbO 4	83.4(2)	C20C19C24	$120.6(8)$
02 YbO 3	90.5(2)	C19C20C21	123.0(8)
02 YbO 4	176.7(2)	C20C21C22	$120.3(9)$
03 YbO 4	86.4(2)	C21-22C23	118 (1)
H 1 YbO	88	C 22 C 23 C 24	120.4(9)
H 1 YbO 2	89	C23C24C19	117.4(8)
H 1 YbO 3	96	Ge 2 C 25 C 26	$119.6(5)$
HIYbO 4	91	Oe 2 C 25 C 30	$126.9(7)$
$\mathrm{H}_{2} \mathrm{YbOl}$	97	C26C25C30	$113.4(8)$
$\mathrm{H}_{2} \mathrm{Y} \mathrm{bO} 2$	98	C25C26C27	117.9(8)
$\mathrm{H} 2 \mathrm{YbO}^{3}$	78	(26027C28	$117.219)$
$\mathrm{H}_{2} \mathrm{YbO} 3$	83	C27C28C29	121(1)
H 1 YbH 2	171	C28C29C30	120(1)
H7GelCl	111	C29C30C25	130.1(9)
H1GelC7	126	Ge 2 C 31 C 32	$121.0(6)$
H1GelC13	118	Ge2C31C36	$124.7(6)$
ClGelc7	100.2(4)	C32C31C36	$113.6(7)$
ClGelC13	99.6(4)	C31C32C33	125.1(8)
C7GelC13	97.9(4)	C32C33C34	117(1)
GelClC 2	129.1(7)	C33C34C35	123(1)
Gelcle6	114.3(7)	C34C35C36	116.1(8)
C2ClC6	$116.6(9)$	C35C36C31	$124.2(8)$
$\mathrm{C1C2C3}$	130(1)	Ybolc37	$115.5(6)$
C 2 C 3 C 4	120(1)	Ybolc40	128.0(6)
C 3 C 4 C 5	117(1)	C3701C40	$96.5(7)$
$\mathrm{C} 4 \mathrm{C5C6}$	121(1)	O1C37C38	$99(1)$
$\mathrm{C5C6Cl}$	114.3(9)	C37C38C39	106(1)
GelC7C8	123.1(8)	C38C39C40	100(1)
Ge1C7C12	114.4(7)	$\mathrm{C} 39 \mathrm{C4001}$	122(1)
C 8 C 7 C 12	122(1)	YbO 2 C 41	130.2(7)
C7C8C9	114(1)	YbO 2 C 44	134.2(7)
C 8 C 9 C 10	129(1)	C 41 O 2 C 44	$95.2(9)$
$\mathrm{C9C10C11}$	$115(1)$	O2C41C42	$106(9)$
C10C11C12	123(1)	C 41 C 42 C 43	105(1)
C11C12C7	116(7)	C42C43C44	102(1)
Ge1C13C14	$119.5(7)$	C 43 C 4402	122(1)
Ge1C13C18	129.7(7)	YbO3C45	132.9(6)
C14C13C18	$110.8(9)$	YbO3C48	$114.9(6)$
$\mathrm{C} 13 \mathrm{Cl4C15}$	120.6(9)	C45O3C48	$110.6(8)$
C14C15C16	119(1)	O3C45C46	115(1)
$\mathrm{C15C16C17}$	122(1)	C45C46C47	102(1)
C 16 Cl 17 Cl 8	120(1)	C46C47C48	109(1)
C17C18C13	127(1)	C 47 C 48 O 3	96.4(8)
I12Ge2C19	125.3	YbO4C49	118.9(6)
H2Ge2C25	100.3	YbO4C52	$127.9(6)$
H2Ge2C31	122.1	C49O4C52	$112.6(7)$
C19Ge2C25	104.8(4)	O4C49C50	107.7(9)
C19Ge2C31	101.1(4)	C49C50C51	101(1)
C 25 Ge 2 C 31	98.8(4)	C50C51.C52	104(1)
		C51C52O4	$93.0(8)$

Corresponding distortions of $\mathrm{H}(1,2) \mathrm{Ge}(1,2) \mathrm{C}(\mathrm{Ph})$ angles are unequal: distortions of $\mathrm{H} 1 \mathrm{Ge} 1 \mathrm{C}(7,13)\left(126,118^{\circ}\right), \mathrm{H} 2 \mathrm{Ge} 2 \mathrm{C}(19,31)\left(125,122^{\circ}\right)$ and $\mathrm{H} 2 \mathrm{Ge} 2 \mathrm{C} 25\left(100^{\circ}\right)$ angles are significantly greater than the distortion of the H 1 Ge 1 C 1 angle (111°). Considerable divergence in bond angles at the Ge atoms is apparently the result of repulsion of Ph rings and THF ligands and can be regarded as evidence for relatively the strong bonding of Yb atom with $\mathrm{Ph}_{3} \mathrm{GeH}$ ligands in molecule of III.

As noted above, the hydride H atoms form μ_{2}-bridges between the Yb and the Ge atoms. The angles at H 1 and H 2 atoms are 176.8 and 156.1°, correspondingly, the H 1 YbH 2 angle is 170.9°. The interatomic $\mathrm{Yb}-\mathrm{H}(1,2)$ distances (1.6 and $1.6 \AA$) are longer than the $\mathrm{Ge} 1-\mathrm{H} 1(1.48 \AA)$ and $\mathrm{Ge} 2-\mathrm{H} 2(1.56 \AA)$ distances. The geometry of these YbHGe groups has been determined from difference synthesis, (i.e. variant (i) (vide supra)). The difference synthesis calculated by variant (ii) reveals a more symmetrical form of this fragment: the $\mathrm{Yb}-\mathrm{H}$ and $\mathrm{Ge}-\mathrm{H}$ distances in this case are $1.5,1.5$ and $1.6,1.6 \AA$ respectively; the $\mathrm{YbH} 1 \mathrm{Ge} 1\left(169^{\circ}\right)$ and $\mathrm{YbH} 2 \mathrm{Ge} 2\left(169^{\circ}\right)$ angles are equal, but the H 1 YbH 2 angle $\left(179^{\circ}\right)$ is almost linear. The geometry of the YbHGe groups with the positions of H 1 and H 2 atoms from difference synthesis calculated in variant (iii) are somewhat different from the geometry determined from variant (i). The YbHGe angles in this case are equal but their values are significantly smaller (135°), H 1 YbH 2 angle is 179°. The $\mathrm{Yb}-\mathrm{H} 1$ and $\mathrm{Yb}-\mathrm{H} 2$ distances are equal $(1.6 \AA)$ and shorter than the $\mathrm{Ge} 1-\mathrm{H} 1(1.7 \AA)$ and $\mathrm{Ge} 2-\mathrm{H} 2$ ($1.7 \AA$) separations.

We have mentioned the ability of the H atoms to form $\mu_{2^{-}}$and μ_{3}-bridges in organolanthanoid derivatives. But only two structures are known in which $\mu_{2}-\mathrm{H}$ bridge is the only connecting-link between united parts of a molecule: viz. the linear $\mathrm{Lu}-\mathrm{H}-\mathrm{Lu}$ bridge in $\left[\left(\mathrm{Cp}_{3} \mathrm{Lu}\right)_{2}\left(\mu_{2}-\mathrm{H}\right)\right]^{-}$anion [13], the $\mathrm{Lu}-\mathrm{H}$ distances in which are equal ($2.09 \AA$), and the symmetrical $\mathrm{Lu}-\mathrm{H}-\mathrm{Al}$ bridge in the complex, $\left[\mathrm{Cp}_{2} \mathrm{Lu}\left(\mu_{2^{-}}\right.\right.$ H) $\left.\mathrm{AlH}_{3}\left(\mathrm{NEt}_{3}\right)\right]_{2}[14]$. The angle at the bridge H atom in this structure is 127°, the $\mathrm{Lu}-\mathrm{H}$ and $\mathrm{Al}-\mathrm{H}$ distances are equal, viz. $1.81 \AA$. The $\mathrm{Yb}-\mathrm{H}$ distances in molecules of III are appreciably shorter than in the structures mentioned. The $\mathrm{Ge}-\mathrm{H}$ distances in III are close to the $\mathrm{Ge}-\mathrm{H}$ distances in $\mathrm{GeH}_{4} 1.527 \AA$ [15] and $\mathrm{Me}_{2} \mathrm{GeH}_{\mathcal{G}} 1.532 \AA$ $[16,17]$ experimental established as well as calculated (1.482 and $1.486 \AA$ respectively) [18].

The $\mathrm{Yb} \cdots$ Ge distances in III (3.142(1), 3.149(1) \AA) in variant (i) with absorption corrections and $(3.140(2)$ and $3.152(2) \AA$) in variant (ii) without absorption corrections are actually equal. The separations are only $-0.25 \AA$ longer than sum of metallic radii by Pauling $(r(\mathrm{Yb})=1.699 \AA, r(\mathrm{Ge})=1.22 \AA$ [19]). Such rather short separations do not exclude the possible existence of a direct interaction between these atoms. It is interesting that the $\mathrm{Er}-\mathrm{Mo}$ distance $3.143 \AA$ in complex $[\mathrm{Cp}(\mathrm{CO}) \mathrm{Mo}]_{3} \mathrm{Er}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} .(\mathrm{EtOH})$, that was classified as a direct $\mathrm{Er}-\mathrm{Mo}$ bond [20], coincides with the $\mathrm{Yb}-\mathrm{Ge}$ separations in III.

From the X-ray data quoted above two variants of bonding are possible in complex III, viz. A and B:

(A)

(B)

The first (A) implies the existence of μ_{2}-bridge H atoms, a formally zerovalent Yb atom, and the absence of direct $\mathrm{Yb}-\mathrm{Ge}$ bonds (i.e. an "open" agostic $\mathrm{Ge}^{-\mathrm{H}} \mathrm{Yb}$ bond). The second (\mathbf{B}) implies the existence of a three-eenter two-electron bond (i.e. a "semi-closed" agostic $\mathrm{Ge}-\mathrm{H}^{\mathrm{H}} \mathrm{Yb}$ bond). The Yb atom in this case is formally di-valent.

The three-center bonding, $\mathrm{R}_{3} \mathrm{EH}$ ligands ($\mathrm{E}=\mathrm{Si}, \mathrm{Ge}$) attacked to atoms of transition metals is confirmed by structural (such as a neutronographic study of $\left(\mathrm{MeC}_{5} \mathrm{H}_{4}\right) \mathrm{Mn}(\mathrm{CO})_{2} \mathrm{HSiFPh}_{2}$ [21]) and NMR [22] investigations, kinetic data on dissociation of the complexes [23], and their reactivity [24]. For the Yb complex III we think that variant \mathbf{A} with the formally zerovalent ytterbium is possible. The confirmation for this supposition is found in the chemical properties of III and first of all the reaction with CO_{2} which proceeds exothermically in contrast to the sluggishly proceeding carboxylation of $\mathrm{Yb}(\mathrm{II})$ compounds.

Experimental

All experiments were carried out in vacuo by Schlenk techniques. The solvents and reagents used had been thoroughly dried and deoxygenated. IR spectra were recorded on a Perkin-Elmer 577 spectrometer.
$\left[H_{2} \mathrm{Yb}(T H F)\right]_{n}(I I)$. A suspension of I $(0.7 \mathrm{~g}(1,35 \mathrm{mmol})$ in 10 ml of THF was placed in an evacuated 200 ml flask. The flask was filled with dihydrogen under atmospheric pressure and sealed. The mixture was shaken at room temperature for 12 h , during which the precipitate of I dissolved almost completely and the solution became a dark reddish-brown. After centrifugation, the solution was decanted from the unchanged I and 15 ml of hexane was added to the solution. The dark reddish-brown precipitate formed was separated from solution by decantation (after prior centrifugation of the mixture) washed with hexane and dried in vacuo. The yield of the dark-brown powder of II is $0.30 \mathrm{~g}\left(88 \%\right.$), m.p. $>200^{\circ} \mathrm{C}$ (dec.). (Found: $\mathrm{C}, 19,89 ; \mathrm{H}, 3,45 ; \mathrm{Yb}, 69,52 . \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{OYb}$ calc.: $\mathrm{C}, 19,44 ; \mathrm{H}, 4,04 ; \mathrm{Yb}, 70,02 \%$). IR (Nujol): 1250, 1070, 1020, 790, 500, 450, $350 \mathrm{~cm}^{-1}$.

The mother liquor was found to contain $0.17 \mathrm{~g}(96 \%)$ of naphthalene.
When the reaction of I with H_{2} was carried out without solvent the powder of I was transformed into a waxy dark-brown liquor during 15 h . THF was added to the reaction mixture and the II that formed was isolated as described above.

Reaction of I with $P h_{3} G e H$ at $80^{\circ} \mathrm{C}$. The mixture of $1(1.41 \mathrm{~g}, 2.73 \mathrm{mmol})$, $\mathrm{Ph}_{3} \mathrm{GeH}(1.5 \mathrm{~g}, 4.92 \mathrm{mmol})$ and 10 ml of THF was heated for 4 h at $80^{\circ} \mathrm{C}$ with periodical shaking. The mixture was centrifuged, the solution was decanted from the unchanged I and the solvent was removed in vacuo. Sublimation of the solid residue $\left(70^{\circ} \mathrm{C}, 0.1\right.$ torr) gave $0.31 \mathrm{~g}(91 \%)$ of naphthalene. The non-volatile part of the residue was extracted with toluene ($20 \mathrm{ml} \times 2$) to leave $0.2 \mathrm{~g}(13.4 \%)$ of $\mathrm{Ph}_{6} \mathrm{Ge}_{2}$ (m.p., mix. m.p. $315-318^{\circ} \mathrm{C}$). Hexane (10 ml) was added to the toluene extracts to give a dark-brown precipitate (0.79 g) which was washed with hexane and dried in vacuo. Treatment of this product with $\mathrm{D}_{2} \mathrm{O}$ in THF gave $71 \mathrm{ml}(3.17 \mathrm{mmol})$ of HD, identified by mass-spectrometry, and ytterbium hydroxide. The ytterbium content $(0.295 \mathrm{~g}, 1,70 \mathrm{mmol})$ of the precipitate was determined by titrometry. The ratio of $\mathrm{HD} / \mathrm{Yb}$ is 1.86 , i.e. the yield of HD is 84.5%, derived from the $\mathrm{H}_{2} \mathrm{Yb}$ groups. In addition $0.37 \mathrm{~g}(24.8 \%)$ of $\mathrm{Ph}_{6} \mathrm{Ge}_{2}$ was found in organic layer.
$\left(\mathrm{Ph}_{3} \mathrm{GeH}\right)_{2} \mathrm{Yb}(\mathrm{THF})_{4}($ III $) \quad 1.07 \mathrm{~g}(2.06 \mathrm{mmol})$ of I was added to a solution of $2.77 \mathrm{~g}(9.08 \mathrm{mmol})$ of $\mathrm{Ph}_{3} \mathrm{GeH}$ in 20 ml of THF. The mixture was shaken for 20 h at room temperature; the precipitate of I dissolved almost completely. The mixture was centrifuged, the red-brown solution was decanted from the precipitate and the solvent was removed in vacuo. The addition of 15 ml of toluene to the waxy, brown residue led to the formation of brownish-yellow crystals of III ($1.37 \mathrm{~g}, 61 \%$). Repeated crystallisations from toluene gave the product, m.p. $129-131^{\circ} \mathrm{C}$ (with dec.). (Found: C, 57.48; H, 5.7. $\mathrm{C}_{52} \mathrm{H}_{64} \mathrm{O}_{4} \mathrm{Ge}_{2} \mathrm{Yb}$ calc.: C, $58.41 ; \mathrm{H}, 5.80 \%$). IR (Nujol): 3050, 2030, 1570, 1430, 1300, 1250, 1180, 1140, 1085, 1060, 1020, 990, 860, $740,690,670,470,320,285,270 \mathrm{~cm}^{-1}$.

The naphthalene evolved was determined qualitively by GLC in toluene solution.

References

1 M.N. Bochkarev, G.S. Kalinina, L.N. Zakharov and S.Ya. Khorshev, in Organoderivatives of rare earth elements, Nauka, Moskow, 1989.
2 M.N. Bochkarev, A.A. Trifonov, E.A. Fedorova, N.S. Emelyanova, T.A. Basalgina, G.S. Kalinina and G.A. Razuvaev, J. Organomet. Chem., 372 (1989) 217.

3 M.N. Bochkarev, E.A. Fedorova, I.M. Penyagina, O.A. Vasina, S.Ya. Khorshev and A.V. Protchenko, Metalloorgan. Khim. 2 (1989) 703.
4 M.N. Bochkarev, I.M. Penyagina, Yu.F. Rad'kov, L.N. Zakharov and Yu.T. Struchkov, Metalloorgan. Khim., 1 (1988) 718.
5 A.N. Egorochkin, S.Ya. Khorshev, N.S. Ostasheva, J. Satgé, P. Rivière, J. Barrau and M. Messol, J. Organomet. Chem., 76 (1974) 29.
6 N. Walker and D. Stuart, Acta crystallogr., A39 (1983) 158.
7 R.G. Gerr, A.I. Yanovski and Yu.T. Struchkov, Krystallographiya, 28 (1983) 1029.
8 W.T. Evans, R. Dominguez and T.E. Hanosa, Organometallics, 5 (1986) 263.
9 H.A. Zinnen, T.T. Pluth and W.T. Evans, J. Chem. Soc., Chem. Commun., (1980) 810.
10 M.F. Lappert, P.I.W. Yarrow, J.L. Atwood, R. Shakir and J. Holton, J. Chem. Soc., Chem. Commun., (1980) 987.

11 M. Adam, X.-F. Li, W. Oroschin and R.D. Firscher, J. Organomet. Chem. 296 (1985) C19.
12 G.B. Deacon, G.D. Fallon and D.L. Wilkinson, J. Organomet. Chem., 293 (1985) 45.
13 H. Schumann, W. Genthe, E. Hahn, M.B. Hossain and D. van der Helm, J. Organomet. Chem., 299 (1986) 67.

14 S.Ya. Khjashanski, B.M. Bulychev, V.K. Belsky and G.L. Soloveichik, J. Organomet. Chem., 327 (1987) 173.

15 R.A. Eades and D.A. Dixon, J. Chem. Phys., 72 (1980) 3309.
16 E.C. Thomas and V.W. Laurie, J. Chem. Phys., 50 (1969) 3512.
17 J. Durig, M.M. Chen and Y.S. Li, J. Phys. Chem., 77 (1973) 227.
18 M.J.R. Dewar, G.L. Crady and E.F. Healy, Organometallics, 6 (1987) 186.
19 L. Pauling, The Nature of the Chemical Bonds, Cornel Univ. Press, NY Ithaca, 1960.
20 G.Z. Suleimanov, R.Yu. Mehdiev, T. Kurbanov, V.G. Turnovand, I.P. Beletskaya, Intern. Couf. Rare Earths, Zürich, (1985) IP6.
21 U. Schubert, K. Ackermann and B. Wörle, J. Am. Chem. Soc., 104 (1982) 7378.
22 E. Colomer, R.J.P. Corriu, C. Marzin and A. Vioux, Inorg. Chem., 21 (1982) 368.
23 F. Carré, E. Colomer, R.J.P. Corriu and A. Vioux, Organometallics, 3 (1984) 1272.
24 A.J. Hart-Davis and W.A.G. Graham, J. Am. Chem. Soc., 94 (1971) 4388.

